Puma and Trail/Dr5 Pathways Control Radiation-Induced Apoptosis in Distinct Populations of Testicular Progenitors
نویسندگان
چکیده
Spermatogonia- stem cells and progenitors of adult spermatogenesis- are killed through a p53-regulated apoptotic process after gamma-irradiation but the death effectors are still poorly characterized. Our data demonstrate that both intrinsic and extrinsic apoptotic pathways are involved, and especially that spermatogonia can be split into two main populations, according to apoptotic effectors. Following irradiation both Dr5 and Puma genes are upregulated in the alpha6-integrin-positive Side Population (SP) fraction, which is highly enriched in spermatogonia. Flow cytometric analysis confirms an increased number of Dr5-expressing SP cells, and Puma-beta isoform accumulates in alpha6-integrin positive cellular extracts, enriched in spermatogonia. Trail-/- or Puma-/- spermatogonia display a reduced sensitivity to radiation-induced apoptosis. The TUNEL kinetics strongly suggest that the extrinsic and intrinsic pathways, via Trail/Dr5 and Puma respectively, could be engaged in distinct subpopulations of spermatogonia. Indeed flow cytometric studies show that Dr5 receptor is constitutively present on more than half of the undifferentiated progenitors (Kit- alpha6+ SP) and half of the differentiated ones (Kit+ alpha6+ SP). In addition after irradiation, Puma is not detected in the Dr5-positive cellular fraction isolated by immunomagnetic purification, while Puma is present in the Dr5-negative cell extracts. In conclusion, adult testicular progenitors are divided into distinct sub-populations by apoptotic effectors, independently of progenitor types (immature Kit-negative versus mature Kit-positive), underscoring differential radiosensitivities characterizing the stem cell/progenitors compartment.
منابع مشابه
Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells
Carnosic acid is a phenolic diterpene from rosmarinus officinalis, and has multiple functions, such as anti-inflammatory, anti-viral, and anti-tumor activity. In this study, we examined whether carnosic acid could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that carnosic acid markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and...
متن کاملIonizing Radiation Induction of Apoptosis in TRAIL Resistant Cancer Cells
TRAIL mediated signaling has gained tremendous appreciation because of its ability to selectively induce apoptosis in cancer cells and leaving non-cancer cells intact. Data obtained through increasingly sophisticated laboratory methodologies, is deepening our understanding about intracellular signaling modulators of TRAIL. It is now well established that there are wide ranging regulators of TRA...
متن کاملThe importance of abrogation of G2-phase arrest in combined effect of TRAIL and ionizing radiation.
BACKGROUND In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. MATERIAL AND METHODS DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic...
متن کاملArsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation.
The current study shows that treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells with a combination of TRAIL and subtoxic doses of arsenic trioxide (As(2)O(3)) induces rapid apoptosis. Whereas TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in glioma cells, treatment with As(2)O(3) efficiently recovered TRAIL-induced ac...
متن کاملCCAAT/Enhancer-Binding Protein Homologous Protein Normal Astrocytes, to TRAIL-Induced Apoptosis via Arsenic Trioxide Sensitizes Human Glioma Cells, but not
The current study shows that treatment of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)–resistant glioma cells with a combination of TRAIL and subtoxic doses of arsenic trioxide (As2O3) induces rapid apoptosis. Whereas TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in glioma cells, treatment with As2O3 efficiently recovered TRAIL-induced activation...
متن کامل